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Abstract- In order to meet market demands 
for quality software products, software 
engineers are increasingly under pressure 
to test more lines of codes. To maintain 
acceptable test coverage, software 
engineers need to consider a significantly 
large number of test cases.  Many 
combinations of possible input parameters, 
hardware/software environments, and 
system conditions need to be tested and 
verified against for conformance based on 
the system’s specification. Often, this 
results into combinatorial explosion of test 
cases. 

While earlier work has indicated that 
pairwise testing (i.e. based on 2-way 
interaction of variables) can be effective to 
detect most faults in a typical software 
system, a counter argument suggests such 
conclusion cannot be generalized to all 
software system faults. In some system, 
faults may also be caused by the 
interaction of more than two parameters 
(i.e. t-way).  In order to address some of 
these issues, this paper discusses a novel 
strategy, called GTWay. Utilizing two main 
algorithms (i.e. the t-way pair generation 
algorithm and the backtracking algorithm 
respectively) as its basis, we demonstrate 
the efficiency and correctness of GTWay 
for t-way test data minimization. 
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I. INTRODUCTION 
As an activity for ensuring quality assurances 
and improving reliability, software testing is 
an important part of the software engineering 
lifecycle. Lack of testing often leads to 
disastrous consequences including loss of 
data, fortunes and even lives. For these 
reasons, many inputs parameters and system 
conditions need to be tested against the 
system’s specification for conformance. 
Although desirable, exhaustive software 
testing is next to impossible due to resources 
as well as timing constraints.  

As illustration, consider the option dialog in 
Microsoft Excel software (see Figure 1). 
Even if only View tab option is considered, 
there are already 20 possible configurations to 
be tested. With the exception of Gridlines 
color which takes 56 possible values, each 
configuration can take two values (i.e. 
checked or unchecked). Here, there are 
220x56 (i.e. 58,720,256) combinations of test 
cases to be evaluated. Assuming that it takes 5 
minute for one test case, then it would require 
nearly 559 years for a complete test of the 
View tab option. 
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Figure 1.  Model of a typical Software System 

While earlier work (e.g. in [8, 10] ) has 
indicated that pairwise testing (i.e. based on 
2-way interaction of variables) can be 
effective to detect most faults in a typical 
software system, a counter argument suggests 
such conclusion cannot be generalized to all 
software system faults.  For example, the 
study by The National Institute of Standards 
and Technology (NIST) [13] reported that 
95% of the actual faults on the test software 
involve 4-way interaction. In fact, almost all 
of the faults are detected with 6-way 
interaction. Thus, as this example illustrates, 
system faults caused by variable interactions 
may also span more than two parameters (i.e. 
t-way). Here, t implies the strength of input 
coverage, that is, t can take up a range of 
value from 2 ≤  t≤  the number of parameters, 
n. If t equals to the number of parameters, n, 
then t is all full strength (i.e. exhaustive 
combination). Viewing from a different 
perspective, t also implies the interaction of 
parameters. Thus, if t = n is chosen, all n 
parameter interactions are covered (i.e. 
exhaustive combinations). Similarly, if t=n-1 
is chosen, only n-1 interaction of parameters 
are covered. In this manner, lesser t value 
always yields lesser combinations. 

Considering more than two parameter 
interaction is not without difficulties. To 
highlight the difficulties, consider the TCAS 
is an aircraft collision avoidance system from 

the Federal Aviation Administration which 
has been used as case study in other related 
works [15, 18, 19]. Here, TCAS module has 
twelve parameters: seven parameters have 2 
values, two parameters have three values, one 
parameter has four values, and two 
parameters have 10 values. Running 
exhaustive test requires 460800 (i.e., 
10x10x4x3x3x2x2x2x2x2x2x2), or 12 way 
testing for this system (i.e. running such test 
may be impossible). Alternatively, 11-way 
testing requires 230400. 10-way requires 
201601. 9-way requires 120361. 8-way 
requires 56742. 7-way requires 26061. 6-way 
requires 10851. 5-way requires 4196. 4-way 
requires 1265. 3-way requires 400. Finally, 
2-way requires 100 test cases. 

As demonstrated above, when the number of 
parameter coverage increases, the number of 
t-way test set also increases exponentially. As 
such, for large system with many parameters, 
considering higher order t-way test set can 
lead toward combinatorial explosion problem.  
We consider this problem for t-way 
generation of test set in our design of GTWay. 
Utilizing two main algorithms (i.e. the t-way 
pair generation algorithm and the 
backtracking algorithm respectively), we 
demonstrate the efficiency and correctness of 
GTWay for t-way test data minimization. 

This paper is structured as follows. Section 
2.0 describes some of the related work. 
Section 3.0 highlights our t-way strategies 
along with the illustrative example. Section 
4.0 discusses the demonstration of 
correctness of our strategy through 
interaction coverage analysis. Finally, section 
5.0 gives our conclusion. 

 

II. RELATED WORK 
A number of strategies have been developed 
on in the past on t-way testing. Although 
useful, existing strategies appear to focus 
more on pairwise (t=2) testing (e.g. AETG [7, 
8], AETGm [9], OATS (Orthogonal Array 
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Test System) [6, 14], G2Way [16], IRPS [23], 
AllPairs [5], IPO [20], TCG (Test Case 
Generator) [24], ReduceArray2 [12], DDA 
(Deterministic Density Algorithm) [11], and 
OATSGen [17]). Here, we are more interested 
on a general strategy for t-way test generation 
for comparative purposes with our work. 
Thus, what follows is our survey on existing 
strategies that supports both pairwise and 
higher order t (i.e. t≥ 2). 

IBM’s Intelligent Test Case Handler (ITCH) 
[1] uses combinatorial algorithms based on 
exhaustive search to construct test suites for 
t-way testing. Although useful as part of 
IBM’s automated test plan generation, ITCH 
results is not optimized as far as the number 
of generated test cases is concerned (i.e. some 
t-way interaction is covered by more than one 
test). Additionally, due to its exhaustive 
search algorithm, ITCH execution typically 
takes a long time. 

Jenny [2], TConfig [3] and TVG [4] are 
public domain tools (available for download) 
that support t-way testing. While we are able 
to execute the tools, their details 
implementations are not known due to limited 
information available in the literature. 
Comparing with TConfig and TVG, Jenny 
appears to produce less test sets as well as run 
faster. Additionally, Jenny can support test 
generation up to t=8. Noted here that we have 
not been successful to summon Jenny for t >8 
as the program implementation crashes.  

IPOG [19] is perhaps the most recent strategy 
for t-way testing. A generalization of a 
pairwise strategy based on vertical and 
horizontal extension, IPOG strategy first 
generates a pairwise test set for the first two 
parameters. It then continues to extend the 
test set to generate a pairwise test set for the 
first three parameters and continues to do so 

for each additional parameter until all the 
parameters of the system are covered via 
horizontal extension. If required (i.e. for 
interaction coverage), IPOG also employs 
vertical extension in order to add new tests 
after the completion of horizontal extension. 

As seen above, much useful and significant 
progress has been achieved as far the support 
for t-way testing is concerned. Nonetheless, 
constructing the minimum test set for t-way 
testing is a NP-complete problem [21, 22] , 
that is, it is unlikely an efficient algorithm 
exists that can always generate an optimal test 
set (i.e. each t-way pair is covered only once 
[21]). Taking the aforementioned challenges, 
it is the development of an optimum strategy, 
called GTWay, for t-way testing is the main 
focus of this paper. 

 

III. THE GTWAY STRATEGY 

As discussed earlier, the GTWay strategy is 
based on two main algorithms, that is, the 
t-way pair generation algorithm and the 
backtracking algorithm respectively.  Both of 
these algorithms will be elaborated next. 

 

A. T-Way Pair Generation Algorithm 
In order to facilitate discussion, consider the 
following running example (with 4 
parameters and 2 values).  Assume that the 
interaction strength, t = 3. 

TABLE 1   
BASE TEST VALUES 

 

Input Variables 

A B C D 
a1 b1 C1 d1 

Base Value 

a2 b2 C2 d2 
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TABLE 2 
  INDEX SEARCH FOR A 4 PARAMETER SYSTEM 

Index 0 1 2 3 4 5 6 7 
Binary 0000 0001 0010 0011 0100 0101 0110 0111 
Index 8 9 10 11 12 13 14 15 
Binary 1000 1001 1010 1011 1100 1101 1110 1111 

 
TABLE 3  

 ROW INDEX FOR A 4 PARAMETER SYSTEM 
Bits Row 

Index 
 

Index b7 b6 b5 b4 b3 b2 b1 b0 
0 7 1 1 1 1 1 1 1 1 
1 11 1 1 1 1 1 1 1 1 
2 13 1 1 1 1 1 1 1 1 
3 14 

  
 

 
 
 
 1 1 1 1 1 1 1 1 

 

Here, the pair generation algorithm first 
identifies all the possible 3 way interactions. 
Referring to Table 1, the 3 way interactions 
possibilities are amongst parameters: ABC, 
ABD, ACD, and BCD. Based on these 
interactions, the t-way pair generation 
algorithm generates the following sets: 

ABC={(a1,b1,c1), (a1,b1,c2), (a1,b2,c1),  

 (a1,b2,c2), (a2,b1,c1), (a2,b1,c2),  

 (a2,b2,c1), (a2,b2,c2)} 

 

ABD={(a1,b1,d1),(a1,b1,d2), (a1,b2,d1), 

 (a1,b2,d2),(a2,b1,d1), (a2,b1,d2),  

             (a2,b2,d1), (a2,b2,d2)} 

ACD={(a1,c1,d1), (a1,c1,d2), (a1,c2,d1),  

             (a1,c2,d2),(a2,c1,d1), (a2,c1,d2),  

             (a2,c2,d1), (a2,c2,d2)} 

BCD={(b1,c1,d1), (b1,c1,d2), (b1,c2,d1), 

 (b1,c2,d2),(b2,c1,d1), (b2,c1,d2),  

 (b2,c2,d1), (b2,c2,d2)} 

 
Algorithm Pair_Generation (t : t-way value) 
1: begin 
2:  let Sp ={} as empty set, where Sp  represents the pair set 
3:  let n∑ =  {n0......nm} where n∑ represents the values defined for each parameter,  
     m = max no of parameters  
4:  let p = {p0 ..pj}, where p represents the sorted set of sets of  values defined for each parameter 
5:  for index=0  to 2 m - 1 
6:   begin 
7:     let b = binary number 
8:     b = convert index to binary  
8:     if (the no of  ‘1’s in b = t) 
9:      begin 
10:      calculate number of possible combinations (PCi )between the partial sets of values  
11:      for the shared parameters 
12:         begin  
13:          multiply {nx x ny} values from n∑  
14:          set the bits group (equal to PCi) in the  index row to 1 
15:         end 
16:     end 
17:   end 
18: end 

Figure 2.  The T-Way Pair Generation Algorithm 
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Algorithm Backtracking (Sp: Set;var St: Set) 
1: begin 
2:  let St ={} as empty set, where St represents the generated test set 
3:  for the first two parameters 
4:   begin 
5:     create partial the test cases by selecting best values for  higher parameters {P3...Pj},  
        that covers the maximum number of uncovered pairwise combinations in Sp

6:     store generated test cases in St

7:     remove covered pairs from Sp (by setting zero values to indicated bits). 
8:   end 
9:   while still found elements in Sp  
10:    begin  
11:      add a new element in the St set with empty fields 
12:      bring the first uncovered combination, decompose and fills the  initial value in the element set 
13:      for the 2nd uncovered combination  
14:        begin 
15:          decompose uncovered combination 
16:          if (current pair element in Sp can be combined with other pair element) 
17:            begin 
18:              count number of uncovered combination  
19:              if (has most uncovered pairs) 
20:                fill it in the element set 
21:            end  
22:          if (the element set does not have matching pair) 
23:            select the first element as default values to the missing parameters 
24:          store it in St and remove the covered pairs from Sp 

25:        end 
26:    end  
27: end  

Figure 3.  The Backtracking Algorithm 
 

As will be discussed later in the next section, 
the generated sets serve two purposes. Firstly, 
any one of these sets can be merged together 
with another set to form a complete test suite 
(e.g. ABC and ABD). Secondly, all of the 
elements in the sets can be used to counter 
check that all the pairs are indeed covered. 

Concerning implementation, the t-way pair 
generation algorithm initially finds the loop 
edge for the t-way combinations (i.e. based on 
the number of defined parameters, P). Then, 
the algorithm performs index searches 
through a loop from 0 to 2p -1. Here, for each 
index, the algorithm converts the number to 
binary format. Now, if the number of binary 
one’s in the index is equal to t value (i.e. 
t-way interaction), then that index is put in the 

index set. Using the same example in Table 1, 
the loop edge is 15 (i.e. 24 -1).  In this case, 
the index searches loop found 4 indexes 
having three one’s, that is (7, 11, 13, 14) 
respectively (see Table 2). 

In the t-way pair generation algorithm, each 
index will contain a number of t-way 
combinations (equals to the multiplication of 
values defined in each shared parameter). For 
our example, the first index will have 2x2x2 
combinations, the second index will have 
2x2x2 combinations, the third index will have 
2x2x2 combinations, and forth index will 
have 2x2x2 combinations.  Hence, the total 
combinations are 32. 
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To minimize the access time and the space 
requirements, an efficient data structure 
(structure of bits) has been designed. Here, 
row indexes are used to store the indexes of 
the t-way combinations. Using our example, 
row index 0 (corresponds to (A, B, C) 
combinations) stores 8 combinations which 
are indicated as bits b0 to b7.  Similarly, row 
index 1 stores 8 combinations whilst row 
index 2 stores 8 combinations and row index 
3 stores 8 combinations (see Table 3).  

Having described its implementation, the 
t-way pair generation algorithm can be 
summarized in Figure 2. 

 

B. The Backtracking Algorithm 

The backtracking algorithm randomly 
chooses the pair sets from the t-way sets and 
iteratively traverses (or backtracks) each 
element within the set in order to merge them 
together to form a complete test suite (see 
Figure 3). Using our earlier example in Table 
1, set ABC, for instance, can be merged with 
any of the other sets. For illustration sake, 
assume that the backtracking algorithm 
randomly chooses the set ABC and ABD for 
merger. Now, the merger rules works as 
follows: 

• Two elements for each t-way pair sets can 
only be merged when they are 
combinable (i.e. the pair elements 
complement each other’s missing value). 

• A test case is selected as a result of the 
merger, only if, it covers the most 
uncovered t-way pairs. This is to ensure 
that optimum test suite (i.e. each possible 
combination is covered at least once) will 
be generated in the end. 

 

Applying the merger rule whilst traversing 
the 3-way pair sets of ABC and ABD, the first 

combinable elements are the first elements of 
both sets. When the first element in ABC 
consisting of (a1,b1,c1) is merged with the 
first element in ABD consisting of (a1,b1,d1), 
the resulting test case is (a1,b1,c1,d1).  Since 
the test case covers all new 3-way pairs of 
(a1,b1,c1), (a1,b1,d1), (a1,c1,d1), (b1,c1,d1), 
the resulting test case is selected as one of the 
test cases in the final test suite. Upon this 
selection, the covered pairs are deleted from 
all of their respective sets. Now, the next 
combinable element within ABC is (a1,b1,c2) 
with the second element in ABD consisting of 
(a1,b1,d2), the resulting test case is 
(a1,b1,c2,d2). Since the test case covers all 
new 3-way pairs of (a1,b1,c2), (a1,b1,d2), 
(a1,c2,d2), (b1,c2,d2), the resulting test case 
is selected as one of the test cases in the final 
test suite, and covered pairs are deleted from 
all of their respective sets. Now, the next 
combinable element within ABC is (a1,b2, 
c1) with the third element in ABD consisting 
of (a1,b2,d1). Here, the resulting test case is 
(a1,b2,c1,d1).   

In this case, the 3-way pairs covered are 
(a1,b2,c1), (a1,b2,d1), (a1,c1,d1), (b2,c1,d1). 
Because there exists covered pair of 
(a1,c1,d1) from earlier merger, the resulting 
test case of  (a1,b2,c1,d1) has not been 
selected in the final test suite (i.e. not 
covering the most uncovered 3-way pairs). 
Now, the traversing and merging process 
continues until all 3-way pairs are covered. In 
this example, the final optimum test suite for 
t=3 is given in Table 4.  

Noted here is the fact that all 4 way 
interaction (i.e. exhaustive) will make up of 
24 = 16 combinations (see Table   5).  

Considering our running example (i.e. 
referring to Table 4 and Table 5), there is a 
minimization of 50% of test suite if the 
strength is relaxed to 3 instead of 4. 

 

 

 

Special Issue of the International Journal of the Computer, the Internet and Management, Vol.17 No. SP1, March, 2009 

36.6



TABLE 4 
OPTIMUM ALL 3 WAY INTERACTION 

 
Input Variables 

A B C D 
a1 b1 c1 d1 
a2 b2 c2 d2 

 
 

Base 
Values 

a1 b1 c1 d1 
a1 b1 c2 d2 
a1 b2 c1 d2 
a1 b2 c2 d1 
a2 b1 c1 d2 
a2 b1 c2 d1 
a2 b2 c1 d1 

 
Optimum 
All 3 Way 
Solutions 

a2 b2 c2 d2 
 

TABLE 5 
EXHAUSTIVE COMBINATION 

 
Input Variables 

A B C D 
a1 b1 c1 d1 

 
 

Base Values 
a2 b2 c2 d2 
a1 b1 c1 d1 
a1 b1 c1 d2 
a1 b1 c2 d1 
a1 b1 c2 d2 
a1 b2 c1 d1 
a1 b2 c1 d2 
a1 b2 c2 d1 
a1 b2 c2 d2 
a2 b1 c1 d1 
a2 b1 c1 d2 
a2 b1 c2 d1 
a2 b1 c2 d2 
a2 b2 c1 d1 
a2 b2 c1 d2 
a2 b2 c2 d1 

 
 
 

All 
Combinatorial 

Values 

a2 b2 c2 d2 
 

Also, not shown in this example is the case 
where parameter values are non-uniform (i.e. 
with unequal number of parameter values). 
Due to this non-uniformity, some parameter 
values are considered don’t care. In the case, 
when the pair element (consisting of don’t 
care values) cannot be covered, the 
backtracking algorithm falls back to the first 
defined values (i.e. in place of don’t care). In 

this manner, the pair element can still be 
covered in the final test suite. 

 

IV. DEMONSTRATION OF 
CORRECTNESS 

In order to investigate whether or not the all 3 
way pairs are covered, it is necessary to 
tabulate all the 3 way interaction. As 
discussed earlier, the interactions are between 
ABC, ABD, ACD, and BCD. Based on these 
interactions, the expected total pairs will be 
32 (i.e. 8 pairs/interactions x 4 interactions).  

Here, we will focus on demonstrating the 
correctness of the GTWay strategy by 
analyzing the resulting test suite. Here, we 
aim to show that GTWay gives optimum 
results, that is, all 3 way pairs of 
combinations are covered at most by one test. 
Based on Table 4, Table 6 lists all the 3 way 
pairs along with the individual test case 
generated by GTWay strategy that cover them 
(denoted as T#).  

TABLE 6 
 FINAL TEST SUITE FOR T=3 

 
T#1 a1 b1 c1 d1 
T#2 a1 b1 c2 d2 
T#3 a1 b2 c1 d2 
T#4 a1 b2 c2 d1 
T#5 a2 b1 c1 d2 
T#6 a2 b1 c2 d1 
T#7 a2 b2 c1 d1 

 
 
 

Test ID 

T#8 a2 b2 c2 d2 
 

As the pair coverage is 100%, and each of the 
pair occurrences is only once, we can 
conclude that GTWay, in this example, 
produces an optimum test suite. Referring to 
Table 7, we observe that each combination 
pair appears at most once (which means that 
the generated test cases include all generated 
pairs) and there is no missing pair (which 
means that our strategy is correct). 
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TABLE 7 
PAIR COVERAGE FOR T=3 

 
Interaction 3 Way pairs Covered 

by  
Occurences 

a1, b1,c1 T#1 1 
a1,b1,c2 T#2 1 
a1,b2,c1 T#3 1 
a1,b2,c2 T#4 1 
a2, b1,c1 T#5 1 
a2,b1,c2 T#6 1 
a2,b2,c1 T#7 1 

 
 
 
 

ABC 

a2,b2,c2 T#8 1 
a1, b1,d1 T#1 1 
a1,b1,d2 T#2 1 
a1,b2,d1 T#3 1 
a1,b2,d2 T#4 1 
a2, b1,d1 T#5 1 
a2,b1,d2 T#6 1 
a2,b2,d1 T#7 1 

 
 
 
 

ABD 

a2,b2,d2 T#8 1 
b1,c1,d1 T#1 1 
b1,c1,d2 T#2 1 
b1,c2,d1 T#3 1 
b1,c2,d2 T#4 1 
b2, c1,d1 T#5 1 
b2,c1,d2 T#6 1 
b2,c2,d1 T#7 1 

 
 
 
 

BCD 

b2,c2,d2 T#8 1 
a1,c1,d1 T#1 1 
a1,c1,d2 T#2 1 
a1,c2,d1 T#3 1 
a1,c2,d2 T#4 1 
a2, c1,d1 T#5 1 
a2,c1,d2 T#6 1 
a2,c2,d1 T#7 1 

 
 
 
 

ACD 

a2,c2,d2 T#8 1 
 

CONCLUDING REMARK 
Summing up, this paper has described the 
development of a deterministic t-way strategy 
(called GTWay) for systematic software test 
data minimization. Additionally, this paper 
has also detailed out the algorithms used for 
GTWay.  Results demonstrate that the 
algorithms work well in terms of optimizing 
the coverage of the pairs.  More work is still 
required in order to evaluate the applicability 
and suitability of GTWay using real test data. 

 

In line with the increasing market demands 
and deadline for more functionality, test 
engineers are often under pressure to test 
more and more code implementations and 
modules in order to maintain the required 
level of product quality. With the support of 
this technique, the effort on testing can be 
significantly reduced (as the test data set is 
also reduced). Hence, the product can be out 
in the market sooner and with less testing 
overhead.  
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