
A Deterministic T-Way Strategy for Test Data
Minimization

Kamal Z. Zamli, Mohammed F. J. Klaib, Mohammed I. Younis, and Noor Syarida Jusof
School of Electrical and Electronics

Universiti Sains Malaysia
14300 Nibong Tebal, Penang, Malaysia

Email: eekamal@eng.usm.my

Abstract- In order to meet market demands
for quality software products, software
engineers are increasingly under pressure
to test more lines of codes. To maintain
acceptable test coverage, software
engineers need to consider a significantly
large number of test cases. Many
combinations of possible input parameters,
hardware/software environments, and
system conditions need to be tested and
verified against for conformance based on
the system’s specification. Often, this
results into combinatorial explosion of test
cases.

While earlier work has indicated that
pairwise testing (i.e. based on 2-way
interaction of variables) can be effective to
detect most faults in a typical software
system, a counter argument suggests such
conclusion cannot be generalized to all
software system faults. In some system,
faults may also be caused by the
interaction of more than two parameters
(i.e. t-way). In order to address some of
these issues, this paper discusses a novel
strategy, called GTWay. Utilizing two main
algorithms (i.e. the t-way pair generation
algorithm and the backtracking algorithm
respectively) as its basis, we demonstrate
the efficiency and correctness of GTWay
for t-way test data minimization.

Keywords- t-way Testing, Software
Engineering

I. INTRODUCTION
As an activity for ensuring quality assurances
and improving reliability, software testing is
an important part of the software engineering
lifecycle. Lack of testing often leads to
disastrous consequences including loss of
data, fortunes and even lives. For these
reasons, many inputs parameters and system
conditions need to be tested against the
system’s specification for conformance.
Although desirable, exhaustive software
testing is next to impossible due to resources
as well as timing constraints.

As illustration, consider the option dialog in
Microsoft Excel software (see Figure 1).
Even if only View tab option is considered,
there are already 20 possible configurations to
be tested. With the exception of Gridlines
color which takes 56 possible values, each
configuration can take two values (i.e.
checked or unchecked). Here, there are
220x56 (i.e. 58,720,256) combinations of test
cases to be evaluated. Assuming that it takes 5
minute for one test case, then it would require
nearly 559 years for a complete test of the
View tab option.

International Conference on IT to Celebrate S. Charmonman's 72nd Birthday, March 2009, Thailand

36.1

Kamal Z. Zamli, Mohammed F. J. Klaib, Mohammed I. Younis, and Noor Syarida Jusof

Figure 1. Model of a typical Software System

While earlier work (e.g. in [8, 10]) has
indicated that pairwise testing (i.e. based on
2-way interaction of variables) can be
effective to detect most faults in a typical
software system, a counter argument suggests
such conclusion cannot be generalized to all
software system faults. For example, the
study by The National Institute of Standards
and Technology (NIST) [13] reported that
95% of the actual faults on the test software
involve 4-way interaction. In fact, almost all
of the faults are detected with 6-way
interaction. Thus, as this example illustrates,
system faults caused by variable interactions
may also span more than two parameters (i.e.
t-way). Here, t implies the strength of input
coverage, that is, t can take up a range of
value from 2 ≤ t≤ the number of parameters,
n. If t equals to the number of parameters, n,
then t is all full strength (i.e. exhaustive
combination). Viewing from a different
perspective, t also implies the interaction of
parameters. Thus, if t = n is chosen, all n
parameter interactions are covered (i.e.
exhaustive combinations). Similarly, if t=n-1
is chosen, only n-1 interaction of parameters
are covered. In this manner, lesser t value
always yields lesser combinations.

Considering more than two parameter
interaction is not without difficulties. To
highlight the difficulties, consider the TCAS
is an aircraft collision avoidance system from

the Federal Aviation Administration which
has been used as case study in other related
works [15, 18, 19]. Here, TCAS module has
twelve parameters: seven parameters have 2
values, two parameters have three values, one
parameter has four values, and two
parameters have 10 values. Running
exhaustive test requires 460800 (i.e.,
10x10x4x3x3x2x2x2x2x2x2x2), or 12 way
testing for this system (i.e. running such test
may be impossible). Alternatively, 11-way
testing requires 230400. 10-way requires
201601. 9-way requires 120361. 8-way
requires 56742. 7-way requires 26061. 6-way
requires 10851. 5-way requires 4196. 4-way
requires 1265. 3-way requires 400. Finally,
2-way requires 100 test cases.

As demonstrated above, when the number of
parameter coverage increases, the number of
t-way test set also increases exponentially. As
such, for large system with many parameters,
considering higher order t-way test set can
lead toward combinatorial explosion problem.
We consider this problem for t-way
generation of test set in our design of GTWay.
Utilizing two main algorithms (i.e. the t-way
pair generation algorithm and the
backtracking algorithm respectively), we
demonstrate the efficiency and correctness of
GTWay for t-way test data minimization.

This paper is structured as follows. Section
2.0 describes some of the related work.
Section 3.0 highlights our t-way strategies
along with the illustrative example. Section
4.0 discusses the demonstration of
correctness of our strategy through
interaction coverage analysis. Finally, section
5.0 gives our conclusion.

II. RELATED WORK
A number of strategies have been developed
on in the past on t-way testing. Although
useful, existing strategies appear to focus
more on pairwise (t=2) testing (e.g. AETG [7,
8], AETGm [9], OATS (Orthogonal Array

Special Issue of the International Journal of the Computer, the Internet and Management, Vol.17 No. SP1, March, 2009

36.2

A Deterministic T-Way Strategy for Test Data Minimizatio

Test System) [6, 14], G2Way [16], IRPS [23],
AllPairs [5], IPO [20], TCG (Test Case
Generator) [24], ReduceArray2 [12], DDA
(Deterministic Density Algorithm) [11], and
OATSGen [17]). Here, we are more interested
on a general strategy for t-way test generation
for comparative purposes with our work.
Thus, what follows is our survey on existing
strategies that supports both pairwise and
higher order t (i.e. t≥ 2).

IBM’s Intelligent Test Case Handler (ITCH)
[1] uses combinatorial algorithms based on
exhaustive search to construct test suites for
t-way testing. Although useful as part of
IBM’s automated test plan generation, ITCH
results is not optimized as far as the number
of generated test cases is concerned (i.e. some
t-way interaction is covered by more than one
test). Additionally, due to its exhaustive
search algorithm, ITCH execution typically
takes a long time.

Jenny [2], TConfig [3] and TVG [4] are
public domain tools (available for download)
that support t-way testing. While we are able
to execute the tools, their details
implementations are not known due to limited
information available in the literature.
Comparing with TConfig and TVG, Jenny
appears to produce less test sets as well as run
faster. Additionally, Jenny can support test
generation up to t=8. Noted here that we have
not been successful to summon Jenny for t >8
as the program implementation crashes.

IPOG [19] is perhaps the most recent strategy
for t-way testing. A generalization of a
pairwise strategy based on vertical and
horizontal extension, IPOG strategy first
generates a pairwise test set for the first two
parameters. It then continues to extend the
test set to generate a pairwise test set for the
first three parameters and continues to do so

for each additional parameter until all the
parameters of the system are covered via
horizontal extension. If required (i.e. for
interaction coverage), IPOG also employs
vertical extension in order to add new tests
after the completion of horizontal extension.

As seen above, much useful and significant
progress has been achieved as far the support
for t-way testing is concerned. Nonetheless,
constructing the minimum test set for t-way
testing is a NP-complete problem [21, 22] ,
that is, it is unlikely an efficient algorithm
exists that can always generate an optimal test
set (i.e. each t-way pair is covered only once
[21]). Taking the aforementioned challenges,
it is the development of an optimum strategy,
called GTWay, for t-way testing is the main
focus of this paper.

III. THE GTWAY STRATEGY

As discussed earlier, the GTWay strategy is
based on two main algorithms, that is, the
t-way pair generation algorithm and the
backtracking algorithm respectively. Both of
these algorithms will be elaborated next.

A. T-Way Pair Generation Algorithm
In order to facilitate discussion, consider the
following running example (with 4
parameters and 2 values). Assume that the
interaction strength, t = 3.

TABLE 1
BASE TEST VALUES

Input Variables

A B C D
a1 b1 C1 d1

Base Value

a2 b2 C2 d2

International Conference on IT to Celebrate S. Charmonman's 72nd Birthday, March 2009, Thailand

36.3

Kamal Z. Zamli, Mohammed F. J. Klaib, Mohammed I. Younis, and Noor Syarida Jusof

TABLE 2
 INDEX SEARCH FOR A 4 PARAMETER SYSTEM

Index 0 1 2 3 4 5 6 7
Binary 0000 0001 0010 0011 0100 0101 0110 0111
Index 8 9 10 11 12 13 14 15
Binary 1000 1001 1010 1011 1100 1101 1110 1111

TABLE 3

 ROW INDEX FOR A 4 PARAMETER SYSTEM
Bits Row

Index

Index b7 b6 b5 b4 b3 b2 b1 b0
0 7 1 1 1 1 1 1 1 1
1 11 1 1 1 1 1 1 1 1
2 13 1 1 1 1 1 1 1 1
3 14

 1 1 1 1 1 1 1 1

Here, the pair generation algorithm first
identifies all the possible 3 way interactions.
Referring to Table 1, the 3 way interactions
possibilities are amongst parameters: ABC,
ABD, ACD, and BCD. Based on these
interactions, the t-way pair generation
algorithm generates the following sets:

ABC={(a1,b1,c1), (a1,b1,c2), (a1,b2,c1),

 (a1,b2,c2), (a2,b1,c1), (a2,b1,c2),

 (a2,b2,c1), (a2,b2,c2)}

ABD={(a1,b1,d1),(a1,b1,d2), (a1,b2,d1),

 (a1,b2,d2),(a2,b1,d1), (a2,b1,d2),

 (a2,b2,d1), (a2,b2,d2)}

ACD={(a1,c1,d1), (a1,c1,d2), (a1,c2,d1),

 (a1,c2,d2),(a2,c1,d1), (a2,c1,d2),

 (a2,c2,d1), (a2,c2,d2)}

BCD={(b1,c1,d1), (b1,c1,d2), (b1,c2,d1),

 (b1,c2,d2),(b2,c1,d1), (b2,c1,d2),

 (b2,c2,d1), (b2,c2,d2)}

Algorithm Pair_Generation (t : t-way value)
1: begin
2: let Sp ={} as empty set, where Sp represents the pair set
3: let n∑ = {n0......nm} where n∑ represents the values defined for each parameter,
 m = max no of parameters
4: let p = {p0 ..pj}, where p represents the sorted set of sets of values defined for each parameter
5: for index=0 to 2 m - 1
6: begin
7: let b = binary number
8: b = convert index to binary
8: if (the no of ‘1’s in b = t)
9: begin
10: calculate number of possible combinations (PCi)between the partial sets of values
11: for the shared parameters
12: begin
13: multiply {nx x ny} values from n∑
14: set the bits group (equal to PCi) in the index row to 1
15: end
16: end
17: end
18: end

Figure 2. The T-Way Pair Generation Algorithm

Special Issue of the International Journal of the Computer, the Internet and Management, Vol.17 No. SP1, March, 2009

36.4

A Deterministic T-Way Strategy for Test Data Minimizatio

Algorithm Backtracking (Sp: Set;var St: Set)
1: begin
2: let St ={} as empty set, where St represents the generated test set
3: for the first two parameters
4: begin
5: create partial the test cases by selecting best values for higher parameters {P3...Pj},
 that covers the maximum number of uncovered pairwise combinations in Sp

6: store generated test cases in St

7: remove covered pairs from Sp (by setting zero values to indicated bits).
8: end
9: while still found elements in Sp
10: begin
11: add a new element in the St set with empty fields
12: bring the first uncovered combination, decompose and fills the initial value in the element set
13: for the 2nd uncovered combination
14: begin
15: decompose uncovered combination
16: if (current pair element in Sp can be combined with other pair element)
17: begin
18: count number of uncovered combination
19: if (has most uncovered pairs)
20: fill it in the element set
21: end
22: if (the element set does not have matching pair)
23: select the first element as default values to the missing parameters
24: store it in St and remove the covered pairs from Sp

25: end
26: end
27: end

Figure 3. The Backtracking Algorithm

As will be discussed later in the next section,
the generated sets serve two purposes. Firstly,
any one of these sets can be merged together
with another set to form a complete test suite
(e.g. ABC and ABD). Secondly, all of the
elements in the sets can be used to counter
check that all the pairs are indeed covered.

Concerning implementation, the t-way pair
generation algorithm initially finds the loop
edge for the t-way combinations (i.e. based on
the number of defined parameters, P). Then,
the algorithm performs index searches
through a loop from 0 to 2p -1. Here, for each
index, the algorithm converts the number to
binary format. Now, if the number of binary
one’s in the index is equal to t value (i.e.
t-way interaction), then that index is put in the

index set. Using the same example in Table 1,
the loop edge is 15 (i.e. 24 -1). In this case,
the index searches loop found 4 indexes
having three one’s, that is (7, 11, 13, 14)
respectively (see Table 2).

In the t-way pair generation algorithm, each
index will contain a number of t-way
combinations (equals to the multiplication of
values defined in each shared parameter). For
our example, the first index will have 2x2x2
combinations, the second index will have
2x2x2 combinations, the third index will have
2x2x2 combinations, and forth index will
have 2x2x2 combinations. Hence, the total
combinations are 32.

International Conference on IT to Celebrate S. Charmonman's 72nd Birthday, March 2009, Thailand

36.5

Kamal Z. Zamli, Mohammed F. J. Klaib, Mohammed I. Younis, and Noor Syarida Jusof

To minimize the access time and the space
requirements, an efficient data structure
(structure of bits) has been designed. Here,
row indexes are used to store the indexes of
the t-way combinations. Using our example,
row index 0 (corresponds to (A, B, C)
combinations) stores 8 combinations which
are indicated as bits b0 to b7. Similarly, row
index 1 stores 8 combinations whilst row
index 2 stores 8 combinations and row index
3 stores 8 combinations (see Table 3).

Having described its implementation, the
t-way pair generation algorithm can be
summarized in Figure 2.

B. The Backtracking Algorithm

The backtracking algorithm randomly
chooses the pair sets from the t-way sets and
iteratively traverses (or backtracks) each
element within the set in order to merge them
together to form a complete test suite (see
Figure 3). Using our earlier example in Table
1, set ABC, for instance, can be merged with
any of the other sets. For illustration sake,
assume that the backtracking algorithm
randomly chooses the set ABC and ABD for
merger. Now, the merger rules works as
follows:

• Two elements for each t-way pair sets can
only be merged when they are
combinable (i.e. the pair elements
complement each other’s missing value).

• A test case is selected as a result of the
merger, only if, it covers the most
uncovered t-way pairs. This is to ensure
that optimum test suite (i.e. each possible
combination is covered at least once) will
be generated in the end.

Applying the merger rule whilst traversing
the 3-way pair sets of ABC and ABD, the first

combinable elements are the first elements of
both sets. When the first element in ABC
consisting of (a1,b1,c1) is merged with the
first element in ABD consisting of (a1,b1,d1),
the resulting test case is (a1,b1,c1,d1). Since
the test case covers all new 3-way pairs of
(a1,b1,c1), (a1,b1,d1), (a1,c1,d1), (b1,c1,d1),
the resulting test case is selected as one of the
test cases in the final test suite. Upon this
selection, the covered pairs are deleted from
all of their respective sets. Now, the next
combinable element within ABC is (a1,b1,c2)
with the second element in ABD consisting of
(a1,b1,d2), the resulting test case is
(a1,b1,c2,d2). Since the test case covers all
new 3-way pairs of (a1,b1,c2), (a1,b1,d2),
(a1,c2,d2), (b1,c2,d2), the resulting test case
is selected as one of the test cases in the final
test suite, and covered pairs are deleted from
all of their respective sets. Now, the next
combinable element within ABC is (a1,b2,
c1) with the third element in ABD consisting
of (a1,b2,d1). Here, the resulting test case is
(a1,b2,c1,d1).

In this case, the 3-way pairs covered are
(a1,b2,c1), (a1,b2,d1), (a1,c1,d1), (b2,c1,d1).
Because there exists covered pair of
(a1,c1,d1) from earlier merger, the resulting
test case of (a1,b2,c1,d1) has not been
selected in the final test suite (i.e. not
covering the most uncovered 3-way pairs).
Now, the traversing and merging process
continues until all 3-way pairs are covered. In
this example, the final optimum test suite for
t=3 is given in Table 4.

Noted here is the fact that all 4 way
interaction (i.e. exhaustive) will make up of
24 = 16 combinations (see Table 5).

Considering our running example (i.e.
referring to Table 4 and Table 5), there is a
minimization of 50% of test suite if the
strength is relaxed to 3 instead of 4.

Special Issue of the International Journal of the Computer, the Internet and Management, Vol.17 No. SP1, March, 2009

36.6

TABLE 4
OPTIMUM ALL 3 WAY INTERACTION

Input Variables

A B C D
a1 b1 c1 d1
a2 b2 c2 d2

Base
Values

a1 b1 c1 d1
a1 b1 c2 d2
a1 b2 c1 d2
a1 b2 c2 d1
a2 b1 c1 d2
a2 b1 c2 d1
a2 b2 c1 d1

Optimum
All 3 Way
Solutions

a2 b2 c2 d2

TABLE 5
EXHAUSTIVE COMBINATION

Input Variables

A B C D
a1 b1 c1 d1

Base Values
a2 b2 c2 d2
a1 b1 c1 d1
a1 b1 c1 d2
a1 b1 c2 d1
a1 b1 c2 d2
a1 b2 c1 d1
a1 b2 c1 d2
a1 b2 c2 d1
a1 b2 c2 d2
a2 b1 c1 d1
a2 b1 c1 d2
a2 b1 c2 d1
a2 b1 c2 d2
a2 b2 c1 d1
a2 b2 c1 d2
a2 b2 c2 d1

All
Combinatorial

Values

a2 b2 c2 d2

Also, not shown in this example is the case
where parameter values are non-uniform (i.e.
with unequal number of parameter values).
Due to this non-uniformity, some parameter
values are considered don’t care. In the case,
when the pair element (consisting of don’t
care values) cannot be covered, the
backtracking algorithm falls back to the first
defined values (i.e. in place of don’t care). In

this manner, the pair element can still be
covered in the final test suite.

IV. DEMONSTRATION OF
CORRECTNESS

In order to investigate whether or not the all 3
way pairs are covered, it is necessary to
tabulate all the 3 way interaction. As
discussed earlier, the interactions are between
ABC, ABD, ACD, and BCD. Based on these
interactions, the expected total pairs will be
32 (i.e. 8 pairs/interactions x 4 interactions).

Here, we will focus on demonstrating the
correctness of the GTWay strategy by
analyzing the resulting test suite. Here, we
aim to show that GTWay gives optimum
results, that is, all 3 way pairs of
combinations are covered at most by one test.
Based on Table 4, Table 6 lists all the 3 way
pairs along with the individual test case
generated by GTWay strategy that cover them
(denoted as T#).

TABLE 6
 FINAL TEST SUITE FOR T=3

T#1 a1 b1 c1 d1
T#2 a1 b1 c2 d2
T#3 a1 b2 c1 d2
T#4 a1 b2 c2 d1
T#5 a2 b1 c1 d2
T#6 a2 b1 c2 d1
T#7 a2 b2 c1 d1

Test ID

T#8 a2 b2 c2 d2

As the pair coverage is 100%, and each of the
pair occurrences is only once, we can
conclude that GTWay, in this example,
produces an optimum test suite. Referring to
Table 7, we observe that each combination
pair appears at most once (which means that
the generated test cases include all generated
pairs) and there is no missing pair (which
means that our strategy is correct).

International Conference on IT to Celebrate S. Charmonman's 72nd Birthday, March 2009, Thailand

36.7

TABLE 7
PAIR COVERAGE FOR T=3

Interaction 3 Way pairs Covered

by
Occurences

a1, b1,c1 T#1 1
a1,b1,c2 T#2 1
a1,b2,c1 T#3 1
a1,b2,c2 T#4 1
a2, b1,c1 T#5 1
a2,b1,c2 T#6 1
a2,b2,c1 T#7 1

ABC

a2,b2,c2 T#8 1
a1, b1,d1 T#1 1
a1,b1,d2 T#2 1
a1,b2,d1 T#3 1
a1,b2,d2 T#4 1
a2, b1,d1 T#5 1
a2,b1,d2 T#6 1
a2,b2,d1 T#7 1

ABD

a2,b2,d2 T#8 1
b1,c1,d1 T#1 1
b1,c1,d2 T#2 1
b1,c2,d1 T#3 1
b1,c2,d2 T#4 1
b2, c1,d1 T#5 1
b2,c1,d2 T#6 1
b2,c2,d1 T#7 1

BCD

b2,c2,d2 T#8 1
a1,c1,d1 T#1 1
a1,c1,d2 T#2 1
a1,c2,d1 T#3 1
a1,c2,d2 T#4 1
a2, c1,d1 T#5 1
a2,c1,d2 T#6 1
a2,c2,d1 T#7 1

ACD

a2,c2,d2 T#8 1

CONCLUDING REMARK
Summing up, this paper has described the
development of a deterministic t-way strategy
(called GTWay) for systematic software test
data minimization. Additionally, this paper
has also detailed out the algorithms used for
GTWay. Results demonstrate that the
algorithms work well in terms of optimizing
the coverage of the pairs. More work is still
required in order to evaluate the applicability
and suitability of GTWay using real test data.

In line with the increasing market demands
and deadline for more functionality, test
engineers are often under pressure to test
more and more code implementations and
modules in order to maintain the required
level of product quality. With the support of
this technique, the effort on testing can be
significantly reduced (as the test data set is
also reduced). Hence, the product can be out
in the market sooner and with less testing
overhead.

ACKNOWLEDGEMENT
This research is funded by the eScienceFund
grants – “Development of a Mobile Agent
Based Parallel and Automated Java Testing
Tool”.

REFERENCES
1. IBM Intelligent Test Case Handler, Available

from:
http://www.alphaworks.ibm.com/tech/whitch,
2005.

2. Jenny, Available from:
http://www.burtleburtle.net/bob/math/.

3. TConfig, Available from:
http://www.site.uottawa.ca/~awilliam/.

4. TVG, Available from:
http://sourceforge.net/projects/tvg.

5. Bach, J. Allpairs Test Case Generation Tool,
Available from:
http://tejasconsulting.com/open-testware/feat
ure/allpairs.html.

6. Bush, K.A. Orthogonal Arrays of Index Unity.
The Annals of Mathematical Statistics, 23 (3).
426-434.

7. Cohen, D.M., Dalal, S.R., Fredman, M.L. and
Patton, G.C. The AETG System: An
Approach to Testing Based on Combinatorial
Design. IEEE Transactions on Software
Engineering, 23 (7). 437-444.

8. Cohen, D.M., Dalal, S.R., Kajla, A. and
Patton, G.C., The Automatic Efficient Test
Generator (AETG) System. in Proc. of the 5th
International Symposium on Software
Reliability Engineering, (Monterey, CA, USA,
1994), 303-309.

International Conference on IT to Celebrate S. Charmonman's 72nd Birthday, March 2009, Thailand

36.8

A Deterministic T-Way Strategy for Test Data Minimizatio

9. Cohen, M.B. Designing Test Suites for
Software Interaction Testing Computer
Science, University of Auckland, New
Zealand, September 2004.

10. Cohen, M.B., Gibbons, P.B., Mugridge, W.B.
and Colbourn, C.J., Constructing Test Suites
for Interaction Testing. in Proc. of the 25th
International Conference on Software
Engineering, (Portland, Oregon USA, 2003),
38-48.

11. Colbourn, C.J., Cohen, M.B. and Turban,
R.C., A Deterministic Density Algorithm for
Pairwise Interaction Coverage. in Proc. of the
IASTED Intl. Conference on Software
Engineering (Innsbruck, Austria, 2004),
345-352.

12. Daich, G.T., Testing Combinations of
Parameters Made Easy [Software Testing]. in
IEEE Systems Readiness Technology
Conference (AUTOTESTCON 2003), (2003),
379-384.

13. Dalal, S.R., Jain, A., Karunanithi, N., Leaton,
J.M., Lott, C.M., Patton, G.C. and Horowitz,
B.M., Model Based Testing in Practice. in
Proc. of the Intl. Conf. on Software
Engineering (ICSE), (1999), 285–294.

14. Hedayat, A.S., Sloane, N.J.A. and Stufken, J.
Orthogonal Arrays: Theory and Applications.
Springer Verlag, New York, 1999.

15. Hutchins, M., Foster, H., Goradia, T. and
Ostrand, T., Experiments on the Effectiveness
of Dataflow- and Control Flow-Based Test
Adequacy Criteria. in Proc. of the 16th
International Conference on Software
Engineering (ICSE-16), (Sorrento, Italy, May
1994), 191–200.

16. Klaib, M.F.J., Zamli, K.Z., Isa, N.A.M.,
Younis, M.I. and Abdullah, R., G2Way – A
Backtracking Strategy for Pairwise Test Data
Generation. in Proc. of the 15th IEEE
Asia-Pacific Software Engineering Conf,
(Beijing, China, 2008), 463-470.

17. Krishnan, R., Krishna, S.M. and Nandhan, P.S.
Combinatorial Testing: Learnings from our
Experience. ACM SIGSOFT Software
Engineering Notes, 32 (3). 1-8.

18. Kuhn, D.R. and Okum, V.,
Pseudo-Exhaustive Testing for Software. in
the 30th Annual IEEE/NASA Software
Engineering Workshop (SEW '06), (April
2006), 25-27.

19. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V. and
Lawrence, J., IPOG: A General Strategy for
T-Way Software Testing. in Proc. of the 14th
Annual IEEE Intl. Conf. and Workshops on
the Engineering of Computer-Based Systems,
(Tucson, AZ U.S.A, 2007), 549-556.

20. Lei, Y. and Tai, K.C., In-Parameter-Order: A
Test Generation Strategy for Pairwise Testing.
in Proc. of the 3rd IEEE Intl. High-Assurance
Systems Engineering Symp, (Washington,
DC, USA, 1998), 254-261.

21. Shiba, T., Tsuchiya, T. and Kikuno, T., Using
Artificial Life Techniques to Generate Test
Cases for Combinatorial Testing. in Proc. of
the 28th Annual Intl. Computer Software and
Applications Conf. (COMPSAC’04), (Hong
Kong, 2004), IEEE Computer Society, 72-77.

22. Tai, K.C. and Lei, Y. A Test Generation
Strategy for Pairwise Testing. IEEE
Transactions on Software Engineering, 28 (1).
109-111.

23. Younis, M.I., Zamli, K.Z. and Isa, N.A.M.,
IRPS–An Efficient Test Data Generation
Strategy for Pairwise Testing. in Proc. of the
12th Intl. Conf. on Knowledge-Based and
Intelligent Information & Engineering
Systems (KES2008), (Zagreb, Croatia, 2008),
Springer-Verlag, 493-500.

24. Yu-Wen, T. and Aldiwan, W.S., Automating
Test Case Generation for the New Generation
Mission Software System. in Proc. of the
IEEE Aerospace Conference, (Big Sky, MT,
USA, 2000), 431-437.

International Conference on IT to Celebrate S. Charmonman's 72nd Birthday, March 2009, Thailand

36.9

	A. T-Way Pair Generation Algorithm
	TABLE 1

	B. The Backtracking Algorithm

